
-QC—
100

.056

4793

1992

C.2

NationalPDES Testbed

Report Series

Sponsored by:

U.S. Department of Defense

CALS Evaluation and
X . n;
Integration Ofnce

The Pentagon

Washington, DC 20301-8000 |
TI

\TIONAL

ESTBEDtm

Considerations for

the Transformation
of STEP Physical

U.S. Department of Commerce

Barbara Hackman Franklin,

Secretary

Files

Technology Administration

Robert M. White,
Robert Kohout

Stephen N. Clark, editor
Under Secretary for Technology

National Institute of

Standards and Technology

John W. Lyons, Director

March 18, 1992

Considerations for the Transformation of STEP
Physical Files

Robert Kohout

edited by Stephen Clark

March 10, 1992

A Note from the Editor: The work described was performed by

Robert Kohout in the summer of 1990, at which time this paper was

drafted. Due to renewed interest in the problem, it seems appropri-

ate to release this heretofore unpublished work so that others may
refer to it. To this end, I have performed my editorial duties, in

truth passing the paper on much as I found it. The entire technical

content is due to Mr. Kohout; editorial errors are, of course, solely

mine.

1 Introduction

The emerging Standard for the Exchange of Product Model Data, ^ commonly
referred to as STEP, is an international standardization effort which addresses

the need to share data in a complex computer environment. STEP will consist

of three primary components of interest to the present work: an information

modeling language called EXPRESS [SPIB]; a set of information models spec-

ified in EXPRESS which define a class of information to be exchanged among
STEP-based applications; and an exchange file syntax which allows data con-

forming to an EXPRESS information model to be exchanged between applica-

tions [VANM]. In the future, there will be other implementation forms as well,

such as a functional interface to a persistent database form [FOWL]. The vari-

ous information models, however, remain independent of these implementation

forms.

PDES (Product Data Exchange using STEP) is the name given to the United

States’ activity in support of the development of STEP. As a part of this activ-

*^The Standard for the Exchange of Product Model Data (STEP) is a project of the Interna-

tional Organization for Steindeirdization (ISO) Technical Committee on Industrial Automation
Systems (TC184) Subcommittee on Industrial Data £md Global Manufacturing Programming
Languages (SC4). For an overview of the standard refer to Part 1: Overview and Fundamental
Principles [MASOj.

1

ity, the National PDES Testbed has been established at the National Institute

of Standards and Technology The Testbed’s mission is to accelerate the devel-

opment of STEP and to act cis a resource for US industry in the validation and

conformance testing of STEP. The Testbed develops and maintains software for

the validation and testing of STEP, as well as serving as a repository of PDES
and STEP documents.

Because the software environment at the Testbed deals with the testing and

validation of an emerging standard, it must be able to accomodate changes

to various parts of the specification. To this end, the software architecture

is quite modular [CLAR, MORR]. An embeddable EXPRESS parser, Fed-X

[LIBE], isolates programs from the syntactic details of EXPRESS. In addition,

it allows most of the rest of the Testbed software to be written in a generic,

schema-independent fashion. Thus, for example, database loaders first read an

EXPRESS schema before attempting to interpret any STEP physical files.

An additional problem in this environment of a constantly changing specifi-

cation is that of keeping test data up-to-date with respect to changing schemas.

Whenever a change is made to a conceptual model, the possible need to change

existing data instantiations based on the old model arises. This document dis-

cusses some of the salient issues involved in automating the translation of such

data. In general, a change in the underlying model will motivate a change in

any existing form of data representation. In the Testbed environment, this cur-

rently implies changes in relational databases, STEP physical files, and memory-
resident working form representations. For the purposes of this discussion, we
will concentrate on the physical file, as this is the only exchange form to be

included in STEP Version 1.0. Each method of data instantiation has its own
nuances; however, for the most part the issues we discuss apply more or less

equally well to each.

2 Motivations for Change

We can identify three major classes of changes to parts of STEP which may
have an impact on the validity of existing physical files. In descending order of

their (apparent) relative frequency, these are

• Changes to the Conceptual Model. These changes are typically made
by a standards committee and are due only to design considerations with

respect to the model itself.

• Changes to the EXPRESS Language. Since the STEP models are

defined using EXPRESS, a change in either the syntax or semantics of the

language may necessitate a change in the model itself.

^Funding for the Testbed has been provided by the Computer-Aided Acquisition and Lo-

gistic Support (CALS) program of the Office of the Secretary of Defense. The work described

is fimded by the United States Govermnent and is not subject to copyright.

2

• Changes to the Physical File Specification. If the formal specifi-

cation of the STEP physical file format changes, existing files must be

modified to reflect this change.

These distinctions are somewhat artificial. For example, changes in the

model due to changes in EXPRESS may be thought of as a special case of the

first category. A naive approach to detecting changes in the conceptual model

that simply compared one version of the model to another and attempted to

determine the differences does not neccesarily have to consider the reasons for

a change. We make this distinction primarily because it is our opinion that any

reasonable physical file translator will have to be able to parse the EXPRESS
language, as well as the STEP physical file. For this reason, the distinction is

important. Changes in a STEP file due only to changes in the model should be

easier to process than those due to changes in the EXPRESS language, since

the latter will require modifications to the EXPRESS parser.

3 Codifying Changes in the Model

To translate existing files effectively, we need some representation for the trans-

formation that is to be applied to them. Some interest has been expressed in

generating such a representation automatically, so we will address the possibility

of doing so.

3.1 An Example from Computer Language Translation

To make use of a familiar analogy, consider a typical compiler for a computer

language. Such a program makes a translation from one language (relatively)

easily understood by humans to another easily interpreted by the computer (i.e.

machine language). The translation is generally deterministic and unambiguous,

and is made in a well understood, well documented fashion. We can subdivide

such a translator into two parts: the parser, which recognizes constructs in

the higher-level source language, and the code generator which produces corre-

sponding machine language code. In practice, parsing is a very well understood,

almost automatic task, while code generation is somewhat more of an art form.

There exist a plethora of “parser generators” to take a specification of the syntax

for a high level language and produce code that will effectively parse programs

written in that language. No such program exists to produce code generators

that is sufficiently powerful and general to be useful in real-life applications.

The reasons for this fact are unclear and subject to much debate; however,

it seems safe to say that while it is relatively easy to recognize the constructs

of a source language, it is not nearly so simple to specify the transformation we
must apply to that construct to produce the equivalent construct in the target

language. This task usually requires a significant use of human intelligence.

3

block structured non-block structured

procedure :==

PROCEDURE id (var-list)

local-variables ;

[procedure]

BEGIN

statement-list ;

END

procedure :==

PROCEDURE id (var-list)

local-variables ;

BEGIN

statement-list ;

END

Figure 1: Syntax For Block Structured and Non-Block Structured Procedure

Generally speaking, the problem derives from the fact that relatively small syn-

tactic changes can imply arbitrarily large semantic differences. A ’classical’

example can be seen in the attempt to translate a block structured language

into a non-block structured language (e.g. Pascal to C). The syntactic difference

is illustrated in Figure 1.

While our block structured example is not as robust as Pascal, which allows

for more than one procedure to be declared within a block, this example is suffi-

cient for our purposes. The syntactic difference between these two constructs is

slight ; we have only allowed for the possible nesting of a single procedure defini-

tion in the block structured case. On the other hand, the semantic implications

are considerable. In particular, to translate from the block structured language

into the non-block structured language, our transformation has to implement

the lexical scoping rules of the block structured language explicitly. What was

once a feature of the compiler has to be mapped out as a feature of the output

program. There is no way to quantify the difficulty this presents, but from the

author’s own anecdotal experience this feature of Pascal is the single most dif-

ficult problem in translating from Pascal to C. The important point is that it

is quite difficult for a human to devise a means of making this transformation,

and yet it is based on a very small syntactic difference.

4

3.2 An Example from STEP

To come a little bit closer to home, let us examine the problem of representing

enumeration values in STEP exchange files. ^ In an early version of the exchange

file mapping [ALTE], enumeration values were implemented as 0 based integers.

Thus the enumeration (RED, GREEN, BLUE) mapped to (0, 1, 2), and an

attribute of this type in a particular instance in a physical file would have one

of these three integer values. Suppose that the model were changed to add the

color BLACK to this enumeration type. If we simply made the new type (RED,

GREEN, BLUE, BLACK) we would have to make no changes whatsoever in

existing physical files, since they presumably only have entries values 0, 1, or

2 and these values still have the same semantic interpretation. However, if

the modeler decided to make the list (RED, BLACK, GREEN, BLUE), then

suddenly the transformation becomes more complex: now all attributes with

value 0 remain 0, those with 1 become 2, and those with 2 become 3. Any
program that is going to be able to handle the general problem of specifying

transformations between versions of a model will have to be able to handle this

case.

That may not seem to be much of a problem, but consider the following:

suppose we assume a later version of the specification (e.g., the current ver-

sion, [VANM]) when we design our translator. This version implements the

same enumeration type above as .RED., .GREEN, or .BLUE, in a particular

instantiation of the type, so we wouldn’t have the problem we described above.

However, if at some later point in time the standard reverted to the earlier ver-

sion of the physical file format (and we can’t assume that it won’t and remain

completely general) then our translator would have to somehow be capable of

suddenly producing the transformation described in the preceding paragraph

without having had any a priori knowledge of such a situation.

3.3 Things Could be Even Worse

Upon consideration of the problem presented in the previous subsection, one

may well suggest that we can solve it by forbidding modelers from adding enu-

meration types in the middle of an enumeration list. This would solve the

present problem, but previously documented changes [YANG] suggest that the

above example is an overly simplistic case of a more general problem. When
the data modeler changes a STEP model, a complex transformation between

the old and new models may exist. Providing a general purpose solution that

could produce these transformations automatically appears quite difficult; in-

deed, it seems that the problem would first require the definition of a complete

® While the current implementation of the physical file may not require a solution to this

problem, a fully general translator should be able to handle this case.

^This paxticuleir problem may be surmoimtable by requiring changes in the physical file

structure to provide an algorithm that could produce the appropriate transformation when
required.

5

formal semantic specification for both EXPRESS and the particular information

model. This is certainly a desirable goal, but the effort involved is not justified

by the purposes of the current project alone. More time would be spent in the

definition of the formal semantics than could possibly be saved by being able to

translate the data automatically.

In summary, the hope for a program that could take any two versions of an

EXPRESS model and generate the transformations necessary to translate the

physical files of one model into those of the other is unrealistic at this time.

This sort of solution, which we refer to as a completely general solution, may be

desirable, but it is not practical. A more reasonable design will be less robust,

in the sense that it will not be able to produce all the requisite transformations

automatically, but it may nonetheless be sufficient for our purposes.

4 What Can be Done

Assuming that we have abandoned hope for a fully general solution to the prob-

lem of translating physical files, we can then consider ’partial’ solutions. Such

solutions tend to be heuristic in nature; their proper design and implementa-

tion is heavily dependent upon the nature of the particular problem they are

intended to solve. Thus an empirical analysis of the types of translations to be

made and their relative frequencies is in order. To begin, we list the types of

motivating changes presented in section 2 and add some assertions regarding

the ease with which the resulting transformations can be handled.

1. Transformations resulting from the change in the format in physical files

are relatively simple in general. Indeed, we will argue later that these

changes should properly be handled separately from transformations mo-
tivated by changes in the models, and that this approach both simplifies

the resulting tools and makes them more powerful. Most of the changes

in this class are similar to the change in the representation of enumeration

values discussed above.

2. Transformations resulting from changes in the EXPRESS language itself

also tend to be relatively straightforward, although these changes may
result in significant changes to the information models. The latter might

well have considerable impact on the contents of existing physical files.

3. Transformations resulting from changes in the conceptual model may be

arbitrarily complex.

In the remainder of this section, we will focus on the final category, cis it is

the most useful and the most interesting. A brief proposal for a solution to the

first category is presented in section 4.2. For the purposes of the current study,

we will assume that transformations motivated by changes to the EXPRESS

6

language will be dealt with as a special case of transformations resulting from

changes to the underlying information models.

A more careful analysis reveals that we can break the third group into cat-

egories, in descending order of frequency, as follows:

• Adding or Deleting an Attribute. This is by far the most common
change made to conceptual models, and is a very simple transformation

to either detect or specify. A slightly more difficult case occurs when

the change is actually made to a supertype, in which case it must be

propagated to all subtypes instantiated in the physical file.

• Attribute Shifts. Occasionally an attribute will be shifted to a new

position in an entity definition, or from one entity to another. One can

imagine a rather straightforward, but imperfect scheme, for detecting this

sort of change. Again, this should be a rather easy change to specify.

• Change of Type. While this can happen generally, the most common
and problematic changes involve aggregates. For example, the modeler

may want to change the cardinality of a set, or perhaps change a list to

a set. These changes can easily be detected, but the transformations are

not always easy to specify. For example, when changing an attribute from

a set to a list, we generally don’t have enough information to produce a

properly ordered list.

• Complex Transformations. We include in this class those transforma-

tions not described above, with the understanding that there may exist

some ’simple’ transformations that we have yet to enumerate. An earlier

study [YANG] provides a good example of a member of this class. In an

effort to remove redundant data, the ISO Integration Committee decided

to radically alter the structure and relationship of several entities. As
we have tried to show above, such transformations cannot generally be

detected, nor are they easily specified.

Given this list, we see that the main problems come from a relatively small

but important class of changes. Except for those changes in the last category, it

may be possible to process EXPRESS model definitions automatically to detect

changes and even specify the appropriate transformations. Whether or not to

write a translator that tries to do the easy work is a major design decision.

4.1 Proposed Approach

In this section, we outline an approach to the construction of a translator which

can apply the transformations listed above to a particular physical file. Whether

or not one decides to design a program to automatically detect certain classes of

transformations, the proposed translator will still require some means of speci-

fying the transformations to be made. That is, regardless of whether or not the

7

physical file translator obtains its transformations from a program or a human is

largely irrelevant. Conceptually, a transformation detector will have to encode

the appropriate translation in some intermediate form, which is then interpreted

by the translator to alter the physical file. If we make this intermediate form

explicit (i.e. external to the program), we then have a language with which to

specify transformations. The explicit design of such a language is advantageous

for several reasons, some of which are:

• A properly designed language can be used by humans to characterize trans-

formations too complex to determine automatically.

• The existence of an intermediate language would allow for fairly straight-

forward mergers of transformations detected automatically with those pro-

vided by humans. We can design a translator to read in a list of transfor-

mations and apply them independently of their source.

• The design and implementation of a transformation detector and the phys-

ical file translator can proceed independently. The language which charac-

terizes the intermediate form serves as a complete interface specification.

• A transformation language provides the modeler a means of unambigu-

ously specifying the intended relationship between instances under the

old model and those under the new.

On the basis of the above discussion, it seems reasonable that the first step

in the design of a physical file transformation system is the design of an inter-

mediate language to represent the required transformations. We have already

provided an informal discussion of the requirements: we must be able to specify

the addition or deletion of an attribute, the shifting of an attribute from one

entity to another, and changes of type. More significantly, we must provide the

data modeler a means for specifying the complex transformations which may
accompany changes in the conceptual model.

4.2 An Approach for Handling Changes in the Exchange
File Format

Assume that we have a specification for data transformations in an intermediate

form. The translator will read in this specification, and begin processing some
number of physical files, one at a time, by reading them into a temporary

working form, applying the necessary transformations, and then writing them

back out in physical file format. This last step requires a knowledge of what

the appropriate format is. Normally, this would just be the original format, but

in the case where the physical file has changed, this could be the new format.

The design of the translator will have to anticipate such changes, so it should

be designed to take a physical file format specification as an input. This gives

US the two-fold advantage of being able to easily modify the translator to reflect

changes in the physical file format, and being able to easily map such changes

to the files themselves.

This specification of the physical file format, which effectively describes the

target language of the translator is problematic. If sufficiently general, we should

be able to use this translator to translate from a STEP physical file to any output

file format. In particular, this would provide a convenient means of translating

STEP data into proprietary formats. However, inspection of some of the existing

proprietary formats for storing data indicates that a fully general solution to

this problem will not be simple. Moreover, there is the additional problem that

a STEP conceptual model is typically a superset of a proprietary format, so

an appropriate mapping may not always exist. For these reasons, we leave the

scope and requirements for this specification an open issue.

4.3 Steps to a Solution

Based upon the above discussions, we can identify the tasks listed below. A
reasonable solution will approach these problems in the following order:

1. The design of an intermediate language for specifying transformations

between instances of different versions of a conceptual model.

2. The design of a physical file format specification which can be used by the

translator to produce properly formatted output.

3. The design and implementation of a translator which can take intermedi-

ate form translations, a physical file format specification, and a physical

file to produce an updated file in the specified format.

4. The design and implementation of a change detector which can automati-

cally detect many of the simple changes made to a model, such as attribute

shifts, additions or deletions and produce an intermediate form represen-

tation of the necessary translations.

5 Data Transformation Language

This section presents a preliminary description of the required operations for a

language to describe data transformations in STEP exchange working files. It

then describes two possible syntactic representations for these operations.

5.1 Required Operations

Any language for specifying data transformations must provide the following

operations:

9

1. Entity Creation. New entities may be added to a model at any time, so

this facility must be included. Note that the full power of the EXPRESS
entity declaration must be supported.

2. Entity Deletion. While it may seem that modelers will rarely wish

to delete existing entities from a model, preferring instead to rename or

redefine existing entities, this operation should nonetheless be available.

3. Renaming an Entity. During the integration process in STEP, it is

likely that entities will be renamed, whether or not other aspects of their

definitions are changed.

4. Changing the Supertype/Subtype Status of an Entity. New sub-

types are frequently added to supertype entities. Other changes may not

be as commonly made to existing entities, but they should nonetheless be

supported.

5. Attribute Creation. The addition of a new attribute to an existing

entity is a very common change. Note that additions to supertypes must

naturally propagate to instantiated subtypes.

6. Attribute Deletion. A relatively common modification.

7. Renaming an Attribute. It is not clear how often such an operation

would be used, but the design should support it.

8. Moving an Attribute Between Entities. It may be possible to ac-

complish this task by some combination of other operations, but this is a

common enough change that it should be supported directly.

9. Changing the Type of an Attribute. This is another frequent change.

Some changes are straightforward, others may be more complicated.

10. Copying Data. This can be at either the entity or attribute level.

11. Transforming Data. The translator should allow arbitrarily complex,

functional transformations of existing data to be made. This implies that

it must include an interpreter capable of evaluating any EXPRESS ex-

pression.

12. Scope Declarations. This is to allow for the possibility of disambiguat-

ing entities of the same name in different schemas.

13. Assertions. This is the only item on this list which may be considered

optional. It may be desirable to allow the specification of data constraints

to insure data integrity during the transformation.

10

5.2 Alternative Implementations

In this section, we present two alternative syntactic representations for the op-

erations listed above. In general, the appropriate representation is a matter of

tcLste. Since it should be fairly easy for a program to generate transformations

using whatever syntax we describe, a primary design consideration should be

ease of use by humans. The first alternative makes the desired operations ex-

plicit, while the second is roughly based upon existing EXPRESS constructs.

Thus the first may be easier for a neophyte to learn and understand, while the

latter may be more familiar to EXPRESS modelers.

In these descriptions, boldface indicates keywords of the proposed language,

while italics are intended to stand for uninstantiated instances of a general type.

Braces surrounding an object as in
[
option

]
represent optional constructs, and

a vertical bar, |, is used to separate alternatives, which may be grouped in

parentheses for clarity. An asterisk, *, indicates that a construct may appear

zero or more times.

5.2.1 Alternative A

The constructs for this alternative are:

1. create entity entity [typeJist] as attrJist;

Where typeJist allows for sub/supertype declarations and attrJist

follows the EXPRESS conventions for entity attribute lists.

2. delete entity entity’,

3. rename entity entity to new.entity’,

4. entity entity is (super
[

sub) type of entity’,

5. insert attr into entity [((after
|

before) attr2)
\

at pos] as type’.

Where type is a valid EXPRESS type description and pos is an inte-

ger specifying the absolute position of the attribute in the attribute

list of entity.

6. delete attribute affr from entity;

7. rename attribute attr to new. attr in entity;

8. move attr from entity to new.entity at pos
;

Where pos describes the attribute’s position in the new attribute

list, as documented above for the insert statement.

9. type of attr in entity is type
;

Where type is a valid EXPRESS type declaration.

11

10. update entity set attr i= expr[y attr.n := expr.n]* [where cond\
;

Where cond is a Boolean function of each entity-attribute instance.

Note that this construct can be used for both operations 10 and 11

of section 5.1. That is, it can be used to both copy and transform

data.

11. beginscope schema',

Where schema is a valid schema within the current scope. The
universal scope is the default, and an active scope must be closed by

a matching endscope statement.

12. endscope;

This closes the most recently opened scope.

5.2.2 Alternative B

The constructs in this implementation would be based upon the EXPRESS
map construct, with some extensions and modifications. Certain EXPRESS
constructs, such as entity declarations, could be used as currently implemented.

In this section we iterate through the required operations of section 5.1 and
show how they would be implemented.

1. Entity Creation This is done with an EXPRESS entity declaration.

2. Entity Deletion. This is implemented via an extension to the map
statement of EXPRESS as follows:

map entity null from old-entity

end_entity
;

3. Renaming an Entity. This is also done with a variant of the map
statement:

map entity new-name from old-name
;

end_entity
;

but this is ambiguous: should this imply that old-name is deleted, or

that new-name is just a copy of old-name? Under the current definition

of EXPRESS, the latter is the case. We must therefore either assume

that the old entity always is destroyed, or we need some construct to

indicate whether the old entity should be retained. For the purposes of

this document, we adopt the following convention: map will always imply

that its second entity argument is to be deleted, and we will use a different

construct, copy, which will imply that the second entity argument is to

12

be retained unchanged. As much as possible, the syntax and semantics of

map and copy will otherwise be identical.

4. Changing the Supertype/Subtype Status of an Entity. In general,

when we map one entity to another, we want to keep the declaration of

the base entity. However, when a model changes, we may have to alter

these declarations. We can use map as follows:

map entity new from old supertype of (a, 6);

end_entity;

map entity new from old subtype of (a);

end-entity;

map entity new from old subtype of (a) supertype of (6);

end_entity;

The general syntax for the sub/supertype field is the same as that of

EXPRESS. Note that is the case where the destination is the same, map
and copy would have the same functionality.

5. Attribute Creation. Here we require an extension to the EXPRESS
version of map, as well cis a redefinition of some semantics. ® In EX-
PRESS, a mapping is made of all named attributes, and those which are

not named explicitly are assumed to be deleted. We will make the opposite

assumption, i.e., that all the attributes of the second entity argument will

be mapped unchanged to the first unless it is explicitly stated otherwise.

Thus

map entity new from old
;

end-entity;

works as expected and is only a special case of a more general principle.

We can then add an attribute by simply naming it and giving its type, as

in:

map entity new from old
;

new-ttUribute ; integer(7)
;

end-entity
;

Note that this syntax does not allow us to specify the position at which

the attribute is to be added. This may not be sufficient.

^As we move further away from EXPRESS, it becomes clearer that perhaps map should

not be used, but rather some other name or construct. This document is not intended as a

final design. It was suggested that we examine using map; here we try to take its use as far

as we can.

13

6. Attribute Deletion. Given the assumption above, we can then delete

an attribute with the following constuct:

map entity new from old
;

aUribute is deleted
;

end.entity;

7 Renaming an Attribute. Again, we need to amend EXPRESS.

map entity new from old
;

attribute is renamed to new-name
;

end_entity;

8. Moving an Attribute Between Entities. Since this command affects

two entities at once, it doesn’t mesh well with the map construct, which

generally affects only one entity (and deletes another). Thus we suggest

the syntax from the above alternative. That is:

move attr
[, attr]* from entity.

1

to entity.2
[
at pos

] ;

9. Changing the Type of an Attribute. Here we use the existing EX-
PRESS syntax:

map entity new from old
;

attribute : retype as type
;

end_entity
;

10. Copying Data. We need to extend the map statement so that it can refer

to more than one entity. To do this, we allow attributes to be referenced

as entity, attribute in expressions and where clauses. For example,

map entity entity from entity
;

attribute := entity.x.attribute.y
;

where cond
;

end_entity
;

Note that cond must be powerful enough to indicate which instances of

enh'ty.x correspond to which instances of entity. This is a difficult problem,

and remains an open issue.

11. Transforming Data. We can use the same basic construct that we use

above, and extend it to allow arbitrary expressions on the right-hand side

of assignments. If we allow an optional type declaration to follow an

expression, we can increase the expressive power of the language. That is,

we can allow statements such as:

14

map entity new from old
;

attribute.a ;= entity.x.attrihuie-y / PI : real(9)
;

attribute.h := old.attribute.b + old.attribute.c
;

attribute.c is deleted
;

end_entity
;

12. Scope Declarations. Here we suggest the use of the beginscope and

endscope declarations introduced in Alternative A.

5.3 Comparing Alternatives

Briefly, the primary advantage to the first alternative language is its simple

syntax. A person using this language to express transformations will find it

relatively easy to learn, understand and use. It may also be easier to generate

statements in this language automatically. At the very least, automatically

generated statements in this language should be more idiomatic. ®

The second alternative offers three advantages. First, it has more expressive

power. One statement in this language can accomplish much more than a single

statement of Alternative A. Secondly, since the language is based primarily upon

existing EXPRESS constructs, one can hope that it would be easily mastered

by a modeler seeking to describe conceptual model changes. Thirdly, from an

implementation standpoint, the lexical analyzer for this language is effectively

written already, as is a portion of the parser, since both can be borrowed from

existing EXPRESS compilers. There is less new language to parse, so the parser

should be simpler.

6 Summary

In the validation and testing environment of the National PDES Testbed, the

problem frequently arises of migrating test data from one version of a schema

to another, or from one version of the STEP exchange file format specification

to another. We have discussed various issues arising from this problem, and

have proposed an approach to a solution. The basic approach is to define a

concrete intermediate representation for the changes between two schemas; this

representation can then be written by a modeler making changes to a model,

or might perhaps be automatically generated by some difference detection en-

gine. Changes in the exchange file format can be dealt with by appropriate

manipulation of the output phase of the transformation engine.

Editor’s note: After writing this paper, Mr. Kohout built an ex-

perimental system based on the EXPRESS-based (Alternative B)

®This is just another way of saying that an automatic transformation generator would tend

to find relatively simple changes, and generate simple statements. The greater expressive

power afforded by Alternative B would most likely not be taken advantage of.

15

syntax. Although his time at NIST ran out before the system was

put into production, he was able to demonstrate the viability of his

approach. Future work at the Testbed on this problem will likely be

based on this approach.

7 References

[ALTE] Altemueller, J., ed., The STEP File Structure, Working Draft N241,

ISO TC184/SC4/WG1, February 1988.

[CLAR] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg, MD,
May 1990.

[FOWL] Fowler, J., ed.. Proposal for the STEP Data Access Interface Specifi-

cation, Working Draft, ISO TC184/SC4/WG7, January 28, 1992.

[LIBE] Libes, D., and S. Clark, Fed-X: The NIST EXPRESS Parser, NIS-

TIR, National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming.

[MASO] Mason, H., ed., ISO 10303 Industrial Automation Systems - Product

Data Representation and Exchange - Part 1: Overview and Fundamental
Principles, Working Draft N43, ISO TC184/SC4/WGPMAG, October 7,

1991.

[MORR] Morris, K. C., Architecture for the Validation Testing System, NIS-

TIR 4742, National Institute of Standards and Technology, Gaithersburg,

MD, December, 1991.

[SPIB] Spiby, P., ed., ISO 10303 Industrial Automation Systems - Product

Data Representation and Exchange - Part 11: The EXPRESS Language

Reference Manual, Committee Draft N14, ISO TC184/SC4, April 29,

1991.

[VANM] Van Maanen, J., ed., ISO 10303 Industrial Automation Systems -

Product Data Representation and Exchange - Part 21: Clear Text Encod-

ing of the Exchange Structure, Committee Draft, ISO TC184/SC4, March

12, 1991.

[YANG] Yang, Y., IPO Integration Committee and SG7 Joint Meeting Min-

utes 6 June 90, June 21, 1990.

16

NIST.114A U.S. DEPARTMENT OF COMMERCE
(REV. 3-90) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCATION OR REPORT NUMBER
NISTIR A793.

2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE

MARCH 1992
4. TITLE AND SUBTITLE

STEP Physical File Transformations

5. AUTHOR(S)

Robert Kohout, Stephen N. Clark (Editor)

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAHHERSBURG, MD 20899

7. CONTRACT/ORANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINQ OROANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY. STATE, ZIP)

Office of the Secretary of Defense
CALS Program Office
Pentagon
Washmgton, DC 20301-8000

10. SUPPLEMENTARY NOTES

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIQNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIQNIFICANT BIBUOQRAPHY OR
LITERATURE SURVEY. MENTION IT HERE)

The problem of automatically transforming valid STEP (Standard for the Exchange of Product Model Data)

exchange files in the face of changes to the corresponding EXPRESS information models is discussed. The

related problems of dealing with changes to the EXPRESS language and to the exchange file format itself are

also briefly discussed. Requirements are proposed for a language to rqiresent the data transformations which

may be required when the underlying information model changes. These requirements address such areas as

attribute movement and retyping, entity reclassification, and other manipulations of entity definitions. Two
alternative syntaxes for such a language are presented and contrasted.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data transformation; data translation; EXPRESS; schema change; STEP; STEP Physical File

13. AVAILABILITY

UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMAtlON SERVICE (NT1S).

j:

X
ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFRCE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NT1S), SPRINGFIELD,VA 22161.

14. NUMBER OF PRINTED PAGES

19

15. PRICE

AO 2

ELECTRONIC FORM

>^i5W!i^~-- ••vrp*?*!

..'/?•
-TJ Pk4;

...
,

,
.. £.,„i

'
'

•

-_

‘ ’“'

' . / ^ , v.y;.S' ''
'

•i>(ifri.;. \r':' 2 ^'" ,'

•S ''^‘SKt'„ ;J
.

*
, •.:'$ni

'

1:

,. ,

.^V#' .
. ,„ ..

;

...,
,

V.,, *- ?.’'»i“''<

hT^l

' .,.' ’
•‘s'

m

w/ <i<

'^'' '

'^•'
I' '/ */.

;

''tei. *; a-'tv * '^. ^fmj\:)[:''
'''

^ j-
' "'V; ^

,
.’{<

'

'. 4’'‘ "' " m.

-fmm H

isiitm i'W

M
,
f -1

' :
,

;?-,. -
.1

A '

»'
S; '’i'

'

.-X,
• (•MMqnMfi, MUM'* MATW -I>'frv^

i?,

f

'v

;

r

J

I

1

